Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration
نویسندگان
چکیده
Fidelity in pluripotent stem cell differentiation protocols is necessary for the therapeutic and commercial use of cells derived from embryonic and induced pluripotent stem cells. Recent advances in stem cell technology, especially the widespread availability of a range of chemically defined media, substrates and differentiation components, now allow the design and implementation of fully defined derivation and differentiation protocols intended for replication across multiple research and manufacturing locations. In this report we present an application of these criteria to the generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. Primary conjunctival cells from human donors aged 70-85 years were reprogrammed to derive multiple iPSC lines that were differentiated into functional RPE using a rapid and defined differentiation protocol. The combination of defined iPSC derivation and culture with a defined RPE differentiation protocol, reproducibly generated functional RPE from each donor without requiring protocol adjustments for each individual. This successful validation of a standardized, iPSC derivation and RPE differentiation process demonstrates a practical approach for applications requiring the cost-effective generation of RPE from multiple individuals such as drug testing, population studies or for therapies requiring patient-specific RPE derivations. In addition, conjunctival cells are identified as a practical source of somatic cells for deriving iPSCs from elderly individuals.
منابع مشابه
Using Stem Cells to Model Diseases of the Outer Retina
Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential ...
متن کاملCell based therapies in retinal diseases
Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...
متن کاملPatient-Specific iPSC-Derived RPE for Modeling of Retinal Diseases
Inherited retinal diseases, such as age-related macular degeneration and retinitis pigmentosa, are the leading cause of blindness in the developed world. Currently, treatments for these conditions are limited. Recently, considerable attention has been given to the possibility of using patient-specific induced pluripotent stem cells (iPSCs) as a treatment for these conditions. iPSCs reprogrammed...
متن کاملهمراهی پلیمورفیسم p.Gly119Arg ژن CFI در مبتلایان به بیماری دژنراسیون ماکولای وابسته به سن در جمعیت ساکن در شهر تهران
Background: Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world and is characterized by progressive degeneration of the retinal pigment epithelium and secondary photoreceptor loss, resulting in visual loss. Etiological research suggests that age related macular degeneration is a complex disease, caused by the interactions of several genetic and enviro...
متن کاملMorphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کامل